Negative regulation of male development in Caenorhabditis elegans by a protein-protein interaction between TRA-2A and FEM-3.
نویسندگان
چکیده
The tra-2 gene of the nematode Caenorhabditis elegans encodes a predicted membrane protein, TRA-2A, that promotes XX hermaphrodite development. Genetic analysis suggests that tra-2 is a negative regulator of three genes that are required for male development: fem-1, fem-2, and fem-3. We report that the carboxy-terminal region of TRA-2A interacts specifically with FEM-3 in the yeast two-hybrid system and in vitro. Consistent with the idea that FEM-3 is a target of negative regulation, we find that excess FEM-3 can overcome the feminizing effect of tra-2 and cause widespread masculinization of XX somatic tissues. In turn, we show that the masculinizing effects of excess FEM-3 can be suppressed by overproduction of the carboxy-terminal domain of TRA-2A. A FEM-3 fragment that retains TRA-2A-binding activity can masculinize fem-3(+) animals, but not fem-3 mutants, suggesting that it is possible to release and to activate endogenous FEM-3 by titrating TRA-2A. We propose that TRA-2A prevents male development by interacting directly with FEM-3 and that a balance between the opposing activities of TRA-2A and FEM-3 determines sex-specific cell fates in somatic tissues. When the balance favors FEM-3, it acts through or with the other FEM proteins to promote male cell fates.
منابع مشابه
A predicted membrane protein, TRA-2A, directs hermaphrodite development in Caenorhabditis elegans.
The nematode C. elegans naturally develops as either an XO male or XX hermaphrodite. The sex-determining gene, tra-2, promotes hermaphrodite development in XX animals. This gene encodes a predicted membrane protein, named TRA-2A, which has been proposed to provide the primary feminising activity of the tra-2 locus. Here, we show that transgenic TRA-2A driven from a heat shock promoter can fully...
متن کاملA sensitized genetic background reveals evolution near the terminus of the Caenorhabditis germline sex determination pathway.
Caenorhabditis elegans and Caenorhabditis briggsae are both self-fertile hermaphroditic nematodes that evolved independently from male/female ancestors. In C. elegans, FEM-1, FEM-2, and FEM-3 specify male fates by promoting proteolysis of the male-repressing transcription factor, TRA-1. Phenotypes of tra-1 and fem mutants are consistent with this simple linear model in the soma, but not in the ...
متن کاملtra-2 encodes a membrane protein and may mediate cell communication in the Caenorhabditis elegans sex determination pathway.
The Caenorhabditis elegans sex-determining gene, tra-2, promotes female development in XX animals. In this paper we report the cDNA sequence corresponding to a 4.7 kb tra-2 mRNA and show that it is composed of 23 exons, is trans-spliced to SL2, and contains a perfect direct repeat in the 3' untranslated region. This mRNA is predicted to encode a 1475 amino acid protein, named pTra2A, that has a...
متن کاملRapid Coevolution of the Nematode Sex-Determining Genes fem-3 and tra-2
Unlike many features of metazoan development, sex determination is not widely conserved among phyla. However, the recent demonstration that one gene family controls sexual development in Drosophila, C. elegans, and vertebrates suggests that sex determination mechanisms may have evolved from a common pathway that has diverged radically since the Cambrian. Sex determination gene sequences often e...
متن کاملCaenorhabditis elegans sex-determining protein FEM-2 is a protein phosphatase that promotes male development and interacts directly with FEM-3.
Male sexual development in the nematode Caenorhabditis elegans requires the genes fem-1, fem-2, and fem-3. The current model of sex determination portrays the FEM proteins as components of a novel signal transduction pathway, but the mechanisms involved in signaling through the pathway are not understood. We report the isolation of fem-2 cDNAs in a yeast two-hybrid screen for clones encoding pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 13 11 شماره
صفحات -
تاریخ انتشار 1999